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The Radon Transform
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Reconstruction Techniques
Image reconstruction techniques fall into two categories:

• Direct methods based on the Central Slice Theorem:

•The 1-d Fourier Transform of each view in the Radon Transform
is a “slice” through the 2-d Fourier Transform of the unknown
function.

• Iterative methods based on discretizing the reconstruction problem
as a matrix equation                and applying an iterative solution
method.

• Different methods result from different methods of discretization
and from different choices of iterative methods.

bxR =
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Algebraic Reconstruction
Technique
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Algebraic Reconstruction
Technique

Leads to a large,  sparse system
. fuK =
Sparsity pattern shown for
K, where the discretized
image is 10 x 10, M = 20
views are used, and n = 5
strips cover each view.

Matrix is 100 x 100.  One
row for each of the Mn
strips, one column for each
of the 10 x 10 pixels.
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Natural Pixel Discretization
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of the strips covered by the
x-rays (e.g.,             shown
at left).

Let            be supported in
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We refer to Au as the “strip-
averaged” Radon Transform.
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Natural Pixel Discretization

Ω
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The adjoint is given by:

,≡,Ψ= � fAuuf jj
∗
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The action of the adjoint is to “spread”  the values of the        back
along the integral strips from which they came.

Hence            is a backprojection operator!fA ∗

f j
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Solving fuA =

A is a short, fat,  “matrix” , and the function               is the jth “row” of  A:),(Ψj yx
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Highly underdetermined, infinitely many solutions, so we seek the
minimum norm solution, I.e., seek               such that
and                .  Such      gives minimum norm solution.

Rw ∈ N wAu = ∗

fuA = w

Observe:  Any function                   will be constant on
the polygons defined by the intersections of the strip
pixels.

wAu = ∗
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Optimal Grids

2 views,
4 strips

6 views,
3  strips

6 views,
5 strips

Examples of “optimal” grids for simple geometries:

If          is the convex hull of the set of strips, the problem  is
“unconstrained” (and retains some useful symmetries).

 If         is a square (or other regular region) inside the support of the
strips, the problem is “constrained.”

Ω

Ω
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The Optimal Grid

Example optimal grid.

M = 32 (no. of views)

n = 32 (strips per view)

N = 1024



12

   Solution satisfies fwAA =)( ∗

AAB ≡ ∗
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So the equation we wish to solve is:
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Theorems about the matrix B
•        is the area of the intersection of the ith and jth strip
pixels.

•B is non-negative, symmetric, positive semidefinite.

• If there are M views, each with n parallel strips, then
N=Mn and B has block structure, where the (j,k)th block
is nxn and gives the areas of intersection of the strips of
the jth and kth views :

•         is diagonal, and the diagonal entry      is the area
of the ith strip pixel.

• In any block        , the sum of the entries on a row
equals the entry in that row of  the diagonal block
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Sparsity and Structure of  B

M = 5 views, n = 20 strips per
view. N = 100. Matrix is

approximately 32% nonzero.

M = 8 views, n = 24 strips per
view. N = 192. Matrix is

approximately 30% nonzero.
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Sparsity and Unconstrained
Symmetry

For the unconstrained (convex
hull) case with M views and n
uniform strips per view, all
entries of the matrix are known
from The first n/2 rows in the
first (M/2+1) blocks.

)( nM 2

M = 8 views, n = 24 strips
per view. N = 192. Matrix

is approximately 30%
nonzero.
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Constant by Angle
Def: A vector v is constant-by-angle if

i.e., where all the entries in v corresponding to a given view (angle)
are constant.

v α...αα...ααα...αααα...ααα= 3322221111
T

MMM

•                                is constant-by-angle and                 .

• A basis for               is given as shown, where the entries +1 and -1

•                                 represent n-vectors of all ones or minus ones,

•                                 corresponding to entire views with those values.

•

•  Let        be the sum of the entries in     corresponding to the kth
view (angle).   If              for all j and k  then
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Gauss-Seidel & Kaczmarz

Gauss-Seidel iteration:

1) Find      such that

2)Set

α

feuAe jj =−)α+(, 0

euu α+← j

Kaczmarz iteration:

1) Find      such that

2)Set

α

feAuAe jj =−)α+(, ∗ 0

eAuu )α+(← ∗
j
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Solution Methods (1)
• Kaczmarz iteration on               , where                       .

• Converges moderately well, to minimum norm solution if f is in range
of A. Solution defined on natural pixel grid. Requires knowledge of B.

• Kaczmarz iteration on             , where                               and              is
the characteristic function of the jth polygon on the optimal grid.

• Converges moderately well  to minimum norm solution if  right-hand
side f is in range of A.

• Very expensive to implement.

• Kaczmarz iteration on             ,

• Very slow to converge, converges to minimum norm solution if
right-hand side is in range of B.

• Gauss-Seidel on               !

fuA = yxPu ),(α= � jj yxPj ),(

fwB =

fwB =

fuA = u Ψα= � jj
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Gauss-Seidel on               .fwB =
fwB =Theorems about GS on               :

• GS on               cannot diverge in the energy seminorm, e.g. if
solves                 then
where                            .

• Let                                 be (n+1)st sweep of GS on                 .

  Let                                    be (n+1)st sweep of Kaczmarz on               .

             If                         then                                  .

• If f is in range(B) then GS converges to w such that                 is  the
minimum 2-norm solution to              .

•                 , and if                                     then                    .

fwB =
fwB =
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vvBv ,≡
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A Gauss-Seidel Reconstruction

“Exact” image, used to
create projection set, with
64 uniform-width strips at
each of 20 angles. Matrix is
1280 x 1280.

Reconstruction using 25
sweeps of Gauss-Seidel
iteration on                 .fwB =
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Gauss-Seidel Performance
Logarithm of norm of the residual,                             plotted as a function

of the number of iteration sweeps.

The iteration stalls after a few GS sweeps.

wBf − )( n
2
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Spectral Analysis of B

“good
modes”

“near null
space”

Null space:
dimension

is 19

Logarithm of the eigenvalues. B is 592 x 592, with M = 20.
Components of the error from the “near null space”  are slow to
converge under Gauss-Seidel iteration.
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GS on “good” and “bad” modes

Residual norm of

as a function of GS sweeps.

wB = 0

Initial guess = v 51

Initial guess = v 045
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Gauss-Seidel on a “good” mode
Spectral decomposition of result of one GS sweep on                ,
using the eigenvector          as initial guess.

wB = 0
v 51

For the “good” mode,
GS mixes modes
moderately, by exciting
minor contributions from
modes in the “near null
space.”

Good
modes

“near
null

space”
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Gauss-Seidel on a “bad” mode
Spectral decomposition of result of one GS sweep on                ,
using the eigenvector          as initial guess.

wB = 0

For the “bad” mode, GS
mixes modes severely,
by exciting major
contributions from other
modes in the “near null
space.”

v 045

Good modes

“near null
space”
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The Good, the Bad, ...

The “good” mode is softly
undulating.  Has algebraic
smoothness and is
eliminated from error
rapidly.

The “bad” mode has some
oscillatory behavior, but is
predominantly nearly null.

Not eliminated from error.
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Multilevel Projection Method (PML)
To solve                  where                            .HHLfuL �:;= 21
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Intergrid transfer operators defined implicity as whatever operators
make the discretization diagram commute, ie.,

is defined by                           .

is defined by                           .

I2
h
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S 2 hh
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Discretization by Projection
The projection discretized problem is:

                                                   giving

Define block subspaces                           so that

Then:                            (not necessarily a unique representation).

Relaxation                           is defined by:

For I = 1,2, … p,

Solve

Set
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Coarse-grid correction
The coarse-grid correction                              is defined by:

Solve

Set

Hence, a two-grid PML method                                is given:

1)

2)

In practice, step 2) is replaced with the recursive call

which gives a PML V-cycle!

uGCu hhh )(←

wPuu Shh )+(←
2h

fPwPuLP hTShhT 222 hhh
=)+(

uGu hhh )(←

uGCu hhh )(←

uLMPu hhh )(←

uLMPu hhh )(← 22
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PML on Image Reconstruction
Theorem:  Let                                      so that                                       .

Then                  is a discretization by orthogonal projection of                .

Guts of Proof:  For each j = 1, 2, … N

                                                  .
Hence, the orthogonality of the projector requires that

S
N

jj
h }Ψ{≡ naps

= 1
AS h )(= egnar ∗

fwB = fuA =

Ψ,Ψ−Ψ,=Ψ,Ψ−= wuwu �� jkkjjkk

−= wBuA

wBuA =

0 Ψ,−=Ψ,−= wAuuPu jj
S h ∗
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PML on Image Reconstruction

.

Theorem: Choose                                        , where

(coarse grid: the “fattened” strips by joining adjacent strips).

Then:                                                        ,                                             .

Hence the standard variational properties hold! Coarse grid operator B
has pairs of rows and columns of fine-grid B “lumped” together.
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S ii
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Then PML relaxation is simply point Gauss-Seidel applied to the matrix

equation               .
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PML Images

Reconstructed using 3 PML V-cycles, 2 relaxation sweeps
downward and 1 relaxation sweep upward. 20 views, 32 strips

per view on fine level.

Exact Image Reconstructed Image
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PML Images

Reconstructed using 3 PML V-cycles, 2 relaxation sweeps
downward and 1 relaxation sweep upward. 64 views, 64 strips

per view on fine level.

Exact Image Reconstructed Image
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Performance: GS vs. PML

Logarithm of residual norm for Gauss-Seidel on Bw=f (solid line)
and PML method (dashed line).  Plotted against work units (1 WU

equals the cost of one relaxation sweep on fine level)
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FAC
(Fast Adaptive Composite Grid Method)

To do FAC we need a global coarse grid         , a local refinement
grid      , and a composite grid          , which is the combination of the

global coarse and local refinement grids.

We also need intergrid transfer operators:

Ωh
Ω2h

Ωh

I hhh
h

Ω→Ω: I hhh
h

22 Ω→Ω:

I hhh
h Ω→Ω: I 2

2
hhh

h Ω→Ω:

Composite grid to refinement grid Composite grid to global coarse grid

Global coarse grid to composite gridRefinement grid to composite grid
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FAC
(Fast Adaptive Composite Grid Method)

Once the grids and operators are defined, FAC proceeds in a
simple two-step process:

Step 1:                                          (restrict the composite residual to global grid)

                                                     (solve the global coarse grid error equation)

                                                                           (add global correction to composite grid solution)

Step 2:                                         (restrict the composite residual to refinement grid)

                                                                           (solve the refinement grid error equation)

                                                     (add refinement correction to composite grid u)

uLfIf 22 hhhh
h

h )−(←

fLu 2122 hhh =
−

fLu hhh =
−1

uIuu hh
h

hh += 2
2

uLfIf hhhh
h

h )−(←

uIuu hh
h

hh +=
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The “Spotlight” Grids
View 1 View 2 View 3 View 1 View 2 View 3

Ω2h Ωh

Global
Coarse

Grid

Local
Refinement

Grid

Ωh

Composite
Grid
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Spotlight Tomography
We need to define grid functions                    , as well as operators
for the various grids,                     .

Use refinement strips in the same fashion as global coarse strips.
Order them after the global grid.  Leads to composite grid problem:

uuu2 hhh ,,
BBB 2 hhh ,,
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,,fwB hhh = which is

FAC implementation: FAC is just block Gauss-Seidel on the
system!

Step 1:

Step 2:
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Spotlight Tomography

Exact solution “Spotlight” solutionPML solution

PML solution using 20 views, 32 strips per view, B is 640x640.

Spotlight solution uses PML strips, plus half-width refinement over the
central half of each view. Composite matrix is 1280x1280. Global

refinement at same scale requires 2560x2560 matrix.
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Spotlight Tomography

Detail of global solution Detail of spotlight solution
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Conclusions

• Natural pixel discretization of the image reconstruction problem
leads to iterative methods competitive with ART for quality of image
and efficiency.

• Combined with Multilevel Projection Methods, natural pixel
discretization yields a multigrid reconstruction algorithm  producing
quality images faster than other algebraic methods.

• Natural pixels and PML can be combined to perform local
refinement of the image, leading to an efficient method of performing
“spotlight” tomography.


